Будущее беспроводных технологий. Сетевые технологии: тенденции и перспективы развития

(Центр Прикладных Исследований Компьютерных Сетей)

ЦПИКС - исследовательский проект по созданию технологий и продуктов для компьютерных сетей нового поколения в России. Мы развиваем и внедряем новейшие и перспективные технологии в области компьютерных сетей и интернета, демонстрируем и проверяем эффективность этих технологий на задачах промышленности и бизнеса. Резидент ИТ-кластера инновационного Фонда «Сколково».

Тенденции развития компьютерных сетей и Интернета

Материал подготовлен специально для журнала Skolkovo Review

Сегодня невозможно представить нашу жизнь без Интернета и информационных технологий. Они прочно вошли в нашу жизнь, значительно упростив ее. С развитием информационных технологий нам становятся доступны новые инструменты, которые делают привычные нам процессы быстрее, удобнее, и дешевле. Однако, те изменения, которые мы сейчас видим – это только верхушка айсберга. Сетевые технологии находятся лишь в начале пути своего роста и по-настоящему большие инновации ждут нас впереди. Итак, какую эволюцию на ближайшие десятилетия можно прогнозировать уже сегодня, видя, в каком направлении идет развитие компьютерных сетей и Интернета?
1. Будет расти охват аудитории, Интернет появится в самых отдаленных местах планеты.
К концу 2012 г. число пользователей Интернет по всему миру достигло 2,4 миллиард пользователей по всему миру. К 2020 г. по прогнозам Национального Научного Фонда США число пользователей Интернет возрастет до 5 млрд. Интернет станет более распределен географически. Самый большой прирост пользователей в ближайшие 10 лет будет происходить за счет жителей развивающихся стран в Африке (сейчас используют не более 7 %), Азии (около 19%) и Среднего Востока (Middle East) (около 28 %). Для сравнение в настоящее время более 72 % жителей Северной Америки используют Интернет. Этот тренд означает, что Интернет к 2020 году не только достигнет отдаленных мест по всему миру, но и будет поддерживать гораздо больше языков и не только привычную нам кодировочную систему ASCII . Российских пользователей Интернет, по данным Минкомсвязи РФ, на начало 2012 года было 70 млн. чел. По этому показателю Россия вышла на первое место в Европе и на шестое место в мире. Согласно результатам исследования агентства РБК.research , уровень проникновения Интернета в России в 2018 году превысит отметку в 80%.
2. В информационных технологиях начинается эпоха программного обеспечения.
Сейчас мы переживаем этап интеллектуализации «железа», когда программное обеспечение становится важнее самого оборудования. Индустрия ПО будет расти большими темпами: в 2010г. ежегодный темп роста софта был не менее 6%, 2015 г. объемы рынка достигнут $365 млрд, четверть из которых приходится на рынок бизнес-приложений. Рынок «железа» будет сокращаться : объем рынка в 2013 г. составил $608 млрд, темп роста с 2008 по 2013 отрицательный -0,7%. До 2018 г. прогнозируется рост на 2,1 % преимущественно за счет роста рынка ПК (он будет расти на 7,5%) и периферийных устройств (принтеры, сканеры и т.д.). ХХI век – это век беспроводных технологий. Только за 2009 г. число абонентов мобильной широкополосной связи (3G, WiMAX и другие технологии высокоскоростной передачи данных) увеличилось на 85 %. К 2014 г. прогнозируют, что 2,5 млрд людей по всему миру будут использовать мобильный широкополосный доступ.
3. Увеличивается скорость передачи данных и пропускная способность.
На сегодняшний день скорость передачи данных в хороших компьютерах - 40 Гбит/сек. Для примера, 4 тома романа «Война и Мир» Л.Толстого - это порядка 40 Мбит, т.е. в 1000 раз меньше! Передать эти 4 тома можно менее, чем за 1 микросекунду. Но, в ближайшем будущем можно будет передавать данные со скоростью света. Уже сегодня есть технология WiGik, которая позволяет на расстоянии нескольких километров передавать информацию со скорость 7 ГБит /сек. методом кодирования информации на физическом уровне. Так же и с пропускной способностью. Согласно данным компании Cisco, сегодня одновременно в Skype работает свыше 35 млн. пользователей, в Facebook - свыше 200 млн, каждую минуту на YouTube загружают 72 часа видео. Эксперты прогнозируют, что к 2015 г. количество устройств в сети будет в два раза выше, чем население планеты. К 2014 году около 80% этого трафика будет составлять видео трафик. Изображения и видео файлы, обмен которыми постоянно происходит во «всемирной паутине», требуют более высокой пропускной способности. И технологии будут развиваться в этом направлении. Пользователи будут общаться, и обмениваться информацией посредством видео и голоса в режиме реального времени. Все больше и больше появляется сетевых приложений, требующих взаимодействия в рольном времени.
4. Семантический WEB.
Мы правомерно движемся в сторону «семантического интернета», в котором информации придается точно определенный смысл, что позволяет компьютерам «понимать» и обрабатывать ее на семантическом уровне. Сегодня компьютеры работают на синтаксическом уровне, на уровне знаков, они считывают и обрабатывают информацию по внешним признакам. Термин «семантическая паутина» был впервые введён сэром Тимом Бернерсом-Ли (один из изобретателей Всемирной паутины) в журнале «Scientific American ». Семантический WEB позволит находить информацию по поиску: «Найти информацию о животных, использующих звуковую локацию, но не являющихся ни летучей мышью ни дельфином», например.
5. Новые объекты передачи.
Благодаря развитию новых технологий можно будет передавать через компьютерные сети то, что раньше казалось невозможным. Например – запах. Машина анализирует молекулярный состав воздуха в одной точке и передает эти данные по сети. В другой точке сети этот молекулярный состав, т.е. запах синтезируется. Прототип подобного устройства уже выпустила американская компания Mint Foundry, называется она Olly, пока не поступила в свободную продажу. Однако, скоро мы сможем увидеть воплощение этих возможностей в повседневной жизни.
6. Интернет станет сетью вещей, а не только компьютеров. Сегодня в сети Интернет насчитывается уже свыще 700 миллионов компьютеров (по данным CIA World Factbook 2012). Каждый год у пользователя увеличивается число устройств, который выходят в сеть: компьютеры, телефоны, планшеты и т.д. Уже сегодня кол-во IP-адресов превышает количество населения Земли (IP-адреса нужны для работы бытовых приборов). С новой архитектурой компьютерных сетей наступит эра «интернета-вещей». Вещи и предметы будут взаимодействовать через сети, это откроет большие возможности для всех сфер жизнедеятельности человека. Одна из ближайших разработок – это «умная пыль» - датчики, разбросанные на большой территории, собирающие информацию. Национальный Научный Фонд США прогнозирует, что около миллиардов датчиков на зданиях, мостах, дорогах будут подключены к Интернет для таких целей, как мониторинг использования электричества, для обеспечения безопасности и т.д. В целом ожидается, что к 2020 г. количество интернет-подключенных датчиков будет на порядок больше, чем количество пользователей. В продолжение данной мысли можно привести размышления Винтона Грэя Сёрфа (американский ученый-математик, считается одним из изобретателей протокола TCP/IP, вице-президент компании Google): «Предположим, что все продукты, которые вы кладете в холодильник, снабжены специальным штрих-кодом или микрочипом так, чтобы холодильник фиксировал все, что вы поместили в него. В таком случае, находясь в университете или на работе, вы можете просматривать эту информацию со своего телефона, смотреть разные варианты рецептов, а холодильник предложил бы вам, что стоит сегодня приготовить. Если расширить эту идею, то получится приблизительно следующая картина. Вы идете в магазин, и пока вы там находитесь, у вас звонит мобильный телефон - это звонит вам холодильник, который советует, что именно стоит купить». «Умный интернет» превратит социальные сети (в том виде, что мы имеем сегодня) в социальные медиа-системы. В помещениях будут установлены камеры и различные датчики. Через собственный аккаунт можно будет кормить питомцев и запускать стиральную машину, например.
7. Роботизация общества.
Уже сегодня мы знаем примеры беспилотных летающих аппаратов, пылесосов-автоматов, в Японии «работают» роботы-полицейские - все эти технологии выполняют свои функции без вмешательства человека. И с каждым годом проникновение таких машин будет только увеличиваться. Одна из нерешаемых задач в вычислительных технологиях - это проблема воссоздания компьютером мышления. Однако, можно соединить человеческий мозг с кибернетической, компьютерной системой. Вспомним фильм «Робокоп». Уже сегодня есть подобные эксперименты, когда протез ноги или руки человека присоединяют к спинному мозгу. Вспомним пример южноафриканского бегуна Оскара Писториуса, с детства лишенного обеих ног, но на соревнованиях обгоняющего абсолютно здоровых конкурентов, благодаря карбоновым протезам. По оценкам экспертов, первый такой «сверх человек», киберорганизм появится еще до 2030 года. Он будет физически совершенный, устойчивый к болезням, радиации и экстремальным температурам. И при этом у него будет мозг человека.
8. Новый статус человека в Интернете.
Интернет меняет быт человека. «Всемирная паутина» становится не только площадкой для получения информации и общения, но и инструментом реализации бытовых нужд: таких как совершение покупок, оплата коммунальных услуг и др. Интернет изменил отношение человека с государством. Личное общение, персональное обращения в специальные службы будет минимизировано. Подать документы в ВУЗ, вызвать скорую, написать заявление в полицию, оформить паспорт – все это уже сегодня возможно сделать электронно. Государство и дальше будет вынуждено генерировать услуги через сеть Интернет. Уже сегодня электронный документооборот по всей стране – важнейший приоритет Министерства связи и массовых коммуникаций РФ. Нужно говорить и о новом статусе человека в мире интернет-технологий. Доступ в сеть станет гражданским правом каждого человека, будет свято охраняться и контролироваться законом наряду с прочими гражданскими свободами. Это недалекое будущее. Так, меняется понятие демократии в обществе. Для волеизлияния граждан больше не нужны специальные площадки, трибуны, СМИ. В связи с этим станет и минимум анонимности. Роскоши менять пароли и заводить аккаунты под несуществующими именами, оставлять едкие комментарии под шапкой-невидимкой – скорее всего не станет. Логин/пароль для входа в сеть могут стать средством идентификации личности, а к нему будут привязаны его реальные паспортные данные. Причем, скорее всего это будет не насаждение «сверху», как попытка цензуры и контроля. А желание самого общества, потребность «снизу». Т.к. чем больше жизнь в интернете будет реальной, тем больше прозрачности захочется его пользователям. Репутация человека в жизни будет определять его репутацию и в глобальной сети, придуманных биографий не будет. Определив данные человека, сеть сама будет создавать фильтры и пропуски к доступу информацией по возрастным ограничениям, к приватной информации, к различным сервисам в соответствии с платёжеспособностью и даже социальной благонадёжностью.
9. Изменения рынка труда и сферы образования.
Активное проникновение сетевых технологий и интернета приведут к изменениям на рынке труда и в сфере образования. Интернет уже превратился в глобальный и ключевой инструмент коммуникации, он все динамичнее превращается из площадки развлечений в площадку труда. Социальные сети, электронная почта, Skype, информационные ресурсы, корпоративные сайты и встроенные в компьютер программы привязывают людей не столько к конкретному офису, сколько к самому компьютеру. А тут уже не важно, откуда ты им пользуешься: с работы, из дома, с кафе или с побережья Индийского океана. Сотрудников, выполняющих свою работу дистанционно, будет все больше. И все больше будет офисов в «кармане», т.е. виртуальных предприятий, которые существуют только в Интернете. Людей, получающих образование дистанционно через новые форматы, предоставляемые сетью Интернет – тоже. Для примера, сегодня в Стэндфордском университете лекцию двух профессоров слушают одновременно 25 000 человек!
10. Интернет станет более «зеленым».
Сетевые технологии потребляют слишком много энергии, объем его растет, и эксперты сходятся во мнении, что будущая архитектура компьютерных сетей должна быть более энергоэффективной. По данным Национальной лаборатории Лоренса Университета Беркли количество энергии, потребляемой глобальной сетью, в период с 2000 по 2006 год удвоилось(!). Интернет занимает 2% мирового потребления электроэнергии, что эквивалентно мощности работы 30ти атомных электростанций – 30 млрд. Вт. Тенденция к «озеленению» или «экологизации» сети Интернет будет ускоряться по мере роста цен на энергоносители.
11. Кибероружие и кибервойны.
У развития интернет-технологий и возможностей компьютерных сетей есть и другая сторона медали. Начиная от киберпреступлений, связанных с увеличением в интернете электронной коммерции, до кибервойн. Киберпространство уже официально признано пятым «полем боя» (таким же как суша, море, воздушное пространство и космос). Военно-морские силы США в 2010 году даже создали кибервойска CYBERFOR, которые находятся в непосредственном подчинении у командования ВМС США. Сегодня под вирусные атаки хакеров попадают не только ПК рядовых пользователей, но и промышленные системы, управляющие автоматизированными производственными процессами. Вредоносный червь может быть использован в качестве шпионажа, а так же диверсий электростанций, аэропортов и других жизнеобеспечивающих предприятий. Так, в 2010 году компьютерный червь Stuxnet поразил ядерные объекты Ирана, отбросив атомную программу этой страны на два года назад. Применение вредоносной программы оказалось по эффективности сравнимо с полноценной военной операцией, но при отсутствии жертв среди людей. Уникальность этой программы заключалась в том, что впервые в истории кибератак вирус физически разрушил инфраструктуру. Совсем недавно, 27 марта этого года произошла крупнейшая хакерская атака в истории, которая даже снизила скорость передачи данных во всем Интернете. Мишенью атаки стала европейская компания Spamhaus, занимающаяся противодействием рассылке спама. Мощность DDoS-атак составила 300 Гбит/сек, при том, что мощности в 50 Гбит/сек хватает для того, чтобы вывести из строя инфраструктуру крупной финансовой организации. Проблема национальной безопасности – один из важнейших вопросов, стоящих на повестке дня в развитых странах. Нынешняя архитектура компьютерных сетей такую безопасность обеспечить не может. Поэтому, индустрия антивирусов/web-защиты и разработки новых технологий по обеспечению безопасности будет расти с каждым годом
12. Выход интернета и сетевых технологий в космос.
Сегодня сеть Интернет носит планетарный масштаб. На повестке дня – межпланетное пространство, космический Интернет.

Международная космическая станция подключена к сети Интернет, что значительно ускоряет процессы работы и взаимодействия станции с Землей. Но обычное установление связи при помощи оптиковолоконного или простого кабеля, которое очень эффективно в земных условиях, невозможно в космосе. В частности из-за того, что невозможно применять в межпланетном пространстве обычный протокол TCP/IP (протокол - особый «язык» компьютерных сетей для «общения» друг с другом).

Исследовательские работы по созданию нового протокола, благодаря которому Интернет мог бы функционировать и на лунных станциях, и на Марсе, ведутся. Так, один из подобных протоколов называется Disruption Tolerant Networking (DTN). Компьютерные сети с этим протоколом уже были применены для связи МКС с Землей, в частности по каналам связи были отправлены фотографии солей, которые были получены в состоянии невесомости. Но эксперименты в этой сфере продолжаются.

Интернет за два с лишним десятка лет его развития практически не менялся концептуально и архитектурно. С одной стороны, внедрялись новые технологии передачи данных, с другой - создавались новые сервисы, но основная концепция сети, архитектура компьютерных сетей остаются на уровне 80-х годов прошлого столетия. Перемены не только давно назрели, но и жизненно необходимы. Т.к. на основе старой архитектуры невозможны инновации. Компьютерные сети уже сегодня работают на пределе своих возможностей, и ту нагрузку, которую предстоит испытать сетям при таком активном росте, они могут просто не выдержать. Развитие и внедрение всех перечисленных тенденций возможно только после внедрения новой, более гибкой архитектуры компьютерных сетей. Во всем научном ИТ-мире это вопрос №1.

Самая перспективная на сегодня технология/архитектура компьютерных сетей, которая способна вывести из кризиса, - это технология программно-конфигурируемых сетей (softwere defined network ). В 2007 году сотрудниками университета Стэнфорда и Беркли был разработан новый «язык» общения компьютерных сетей – протокол OpenFlo w и новый алгоритм работы компьютерных сетей – ПКС технология. Ее основная ценность в том, что она позволяет уйти от «ручного» управления сетью. В современных сетях функции управления и передачи данных совмещены, что делает контроль и управление очень сложным. ПКС-архитектура разделяет процесс управления и процесс передачи данных. Что открывает колоссальные возможности для развития интернет-технологий, так как ПКС не в чем нас не ограничивает, выводя на первый план программное обеспечение. В России изучением ПКС занимается Центр прикладных исследований компьютерных сетей.

Для того, чтобы разобраться как устроена локальная сеть , необходимо разобраться в таком понятии, как сетевая технология .

Сетевая технология состоит из двух компонентов: сетевых протоколов и аппаратуры, обеспечивающей работу этих протоколов. Протоколом в свою очередь является набор «правил», с помощью которых компьютеры, находящиеся в сети, могут соединяться друг с другом, а также обмениваться информацией. С помощью сетевых технологий у нас есть Интернет, есть локальная связь между компьютерами, стоящими у вас дома. Еще сетевые технологии называют базовыми , но также имеют еще одно красивое название – сетевые архитектуры .

Сетевые архитектуры определяют несколько параметров сети , о которых необходимо иметь небольшое представление, чтобы разобраться в устройстве локальной сети:

1)Скорость передачи данных. Определяет, какое количество информации, которая обычно измеряется в битах, может быть передана через сеть за определенное время.

2)Формат сетевых кадров. Информация, передаваемая через сеть, существует в виде так называемых «кадров» — пакетов информации. Сетевые кадры в разных сетевых технологиях имеют различные форматы передаваемых пакетов информации.

3)Тип кодирования сигналов. Определяет каким образом с помощью электрических импульсов, информация кодируется в сети.

4)Среда передачи. Это материал (обычно кабель), через который проходит поток информации – той самой, которая в итоге выводится на экраны наших мониторов.

5)Топология сети. Это схема сети, в которой есть «ребра», представляющие собой кабеля и «вершины» — компьютеры, к которым эти кабеля тянутся. Распространены три основных вида схем сетей: кольцо, шина и звезда.

6)Метод доступа к среде передачи данных. Используется три метода доступа к сетевой среде: детерминированный метод, случайный метод доступа и приоритетная передача. Наиболее распространен детерминированный метод, при котором при помощи специального алгоритма, время использования передающей среды делится между всеми компьютерами находящимися в среде. В случае случайного метода доступа к сети компьютеры состязаются в доступе сети. Такой метод имеет ряд недостатков. Одним из таких недостатков является потеря части передаваемой информации из-за столкновения пакетов информации в сети. Приоритетный доступ обеспечивает соответственно наибольший объем информации к установленной приоритетной станции.

×

Набор этих параметров определяет сетевую технологию.

В настоящее время широко распространена сетевая технология IEEE802.3/Ethernet . Широкое распространение она получила, благодаря простым и недорогим технологиям. Также популярна за счёт того, что обслуживание таких сетей проще. Топология Ethernet сетей обычно строится в виде «звезды», либо «шины». Средой передачи в таких сетях применяются как тонкие, так и толстые коаксиальные кабеля , а также витые пары и оптоволоконные кабеля . Протяженность сетей Ethernet обычно колеблется от 100 до 2000 метров. Скорость передачи данных в таких сетях обычно около 10 мбит/с. В сетях Ethernet обычно используется метод доступа CSMA/CD, относящийся к децентрализованным случайным методам доступа к сети.

Существуют также высокоскоростные варианты сети Ethernet: IEEE802.3u/Fast Ethernet и IEEE802.3z/Gigabit Ethernet , обеспечивающие скорость передачи данных до 100 мбит/с и до 1000 мбит/с соответственно. В этих сетях в качестве среды передачи используется преимущественно оптоволокно , либо экранированная витая пара .

Существуют также менее распространенные, но при этом повсеместно использующиеся сетевые технологии.

Сетевая технология IEEE802.5/Token-Ring характерна тем, что все вершины или узлы (компьютеры) в такой сети объединены в кольцо, используют маркерный метод доступа к сети, поддерживают экранированную и неэкранированную витую пару , а также оптоволокно в качестве передающей среды. Скорость в сети Token-Ring до 16 мбит/с. Максимальное количество узлов, находящихся в таком кольце, составляет 260, а длина всей сети может достигать 4000 метров.

Прочитайте по теме следующие материалы:

Локальная сеть IEEE802.4/ArcNet особенна тем, что в ней для передачи данных используется метод доступа с помощью передачи полномочий. Эта сеть является одной из самых старейших и ранее популярных в мире. Такая популярность обусловлена надежностью и дешевизной сети. В наше время такая сетевая технология менее распространена, так как скорость в такой сети довольно низкая – около 2,5 мбит/с. Как и большинство других сетей в качестве передающей среды использует экранированные и неэкранированные витые пары и оптоволоконные кабеля, которые могут образовывать сеть длиной до 6000 метров и включать в себя до 255 абонентов.

Сетевая архитектура FDDI (Fiber Distributed Data Interface) , базируется на IEEE802.4/ArcNet и имеет большую популярность из-за своей высокой надежности. Такая сетевая технология включает в себя два оптоволоконных кольца , протяженностью до 100 км. При этом также обеспечивается высокая скорость передачи данных в сети – около 100 мбит/с. Смысл создания двух оптоволоконных колец состоит в том, что по одному из колец проходит путь с резервными данными. Таким образом снижается шанс потери передаваемой информации. В такой сети может находиться до 500 абонентов, что также является преимуществом перед другими сетевыми технологиями.

Перспективы развития сетевых технологий

Сергей Пахомов

Пользователи ПК уже давно смирились с мыслью, что угнаться за темпами обновления комплектующих для ПК невозможно. Новый процессор последней модели перестает быть таковым уже через два-три месяца. Столь же стремительно обновляются и другие компоненты ПК: память, жесткие диски, материнские платы. И несмотря на заверения скептиков, которые утверждают, что для нормальной работы с ПК сегодня достаточно и процессора Celeron 400 МГц, множество компаний (во главе с Microsoft, конечно) неустанно трудятся над тем, чтобы найти достойное применение «лишним» гигагерцам. И надо отметить, что это у них неплохо получается.

а фоне возрастающей мощности ПК бурными темпами развиваются и сетевые технологии. Обычно развитие сетевых технологий и аппаратной части компьютеров традиционно рассматривается по отдельности, однако эти два процесса оказывают сильное влияние друг на друга. С одной стороны, увеличение мощности компьютерного парка в корне меняет контент приложений, что приводит к росту объемов информации, передаваемой по сетям. Быстрый рост IP-трафика и конвергенция сложных приложений для работы с голосом, данными и мультимедиа требуют постоянного наращивания пропускной способности сетей. При этом основой экономичных и высокопроизводительных сетевых решений остается технология Ethernet. С другой стороны, сетевые технологии не могут развиваться будучи не привязанными к возможностям компьютерного оборудования. Вот простой пример: для того чтобы реализовать потенциальные возможности гигабитного Ethernet, потребуется процессор Intel Pentium 4 с тактовой частотой не менее 2 ГГц. В противном случае компьютер или сервер будет просто не в состоянии переварить столь высокий трафик.

Влияние сетевых и компьютерных технологий друг на друга постепенно приводит к тому, что персональные компьютеры перестают быть только персональными, а начавшийся процесс конвергенции вычислительных и коммуникационных устройств мало-помалу избавляет персональный компьютер и от «компьютерности», то есть коммуникационные устройства наделяются вычислительными возможностями, что сближает их с компьютерами, а последние, в свою очередь, приобретают коммуникационные возможности. В результате такого сближения компьютеров и коммуникационных устройств постепенно начинает формироваться класс устройств следующего поколения, которые уже перерастут роль персональных компьютеров.

Впрочем, процесс конвергенции вычислительных и коммуникационных устройств еще только набирает обороты, и судить о его последствиях пока еще рано. Если же говорить о дне сегодняшнем, то стоит отметить, что после продолжительного застоя в развитии технологии для локальных сетей, который характеризовался господством Fast Ethernet, наблюдается процесс перехода не только на более высокоскоростные стандарты, но и на принципиально новые технологии сетевого взаимодействия.

Сейчас разработчикам на выбор предоставлены четыре возможности модернизации сетей:

Gigabit Ethernet для корпоративных пользователей;

Беспроводной Ethernet в офисе и дома;

Сетевые средства хранения данных;

10 Gigabit Ethernet в городских сетях.

Ethernet имеет несколько особенностей, которые обусловили повсеместное распространение этой технологии в IP-сетях:

Масштабируемая производительность;

Масштабируемость для применения в различных сетевых приложениях - от локальных сетей малого радиуса действия (до 100 м) до городских сетей (40 и более километров);

Низкая цена;

Гибкость и совместимость;

Простота использования и администрирования.

В совокупности эти особенности Ethernet позволяют применять данную технологию в четырех основных направлениях развития сетей:

Гигабитные скорости для корпоративного применения;

Беспроводные сети;

Системы сетевого хранения данных;

Ethernet в городских сетях.

В настоящее время Ethernet является наиболее широко используемой технологией создания локальных сетей во всем мире. По данным компании International Data Corporation (IDC 2000), более 85% всех локальных сетей построено на основе Ethernet. Современные технологии Ethernet далеко ушли от спецификаций, предложенных доктором Робертом Меткалфом и разработанных совместными усилиями компаний Digital, Intel и Xerox PARC в 1980 году.

Секрет успеха Ethernet легко объясним: за последние два десятилетия стандарты Ethernet постоянно совершенствовались, чтобы соответствовать все возрастающим требованиям к компьютерным сетям. Разработанная в начале 80-х годов технология Ethernet со скоростью передачи данных 10 Мбит/с эволюционировала сначала в версию со скоростью передачи данных 100 Мбит/с, а в наши дни - в современные стандарты Gigabit Ethernet и 10 Gigabit Ethernet.

Ввиду низкой стоимости решений на базе гигабитной технологии Ethernet и четко выраженного намерения поставщиков решений дать своим клиентам технологический запас на будущее, поддержка гигабитного Ethernet становится обязательной для корпоративных настольных ПК. IDC сообщает, что, по некоторым оценкам, к середине этого года более 50% поставляемых устройств для локальных сетей будут поддерживать Gigabit Ethernet.

Через год или два после того, как клиенты начнут переходить на Gigabit Ethernet, будет модернизирована и вся инфраструктура. Если следовать историческим тенденциям, то где-то в середине 2004 года наступит переломный момент в спросе на гигабитные коммутаторы. Широкомасштабное использование Gigabit Ethernet на настольных ПК, в свою очередь, приведет к необходимости применения 10 Gigabit Ethernet в серверах и магистралях корпоративных сетей. Использование 10 Gigabit Ethernet отвечает нескольким ключевым требованиям к высокоскоростным сетям, включая меньшую совокупную стоимость владения по сравнению с используемыми в настоящее время альтернативными технологиями, гибкость и совместимость с существующими сетями Ethernet. Благодаря всем этим факторам 10 Gigabit Ethernet становится оптимальным решением для городских сетей.

Изготовители оборудования и провайдеры услуг в ходе создания городских сетей могут столкнуться с некоторыми проблемами. Следует ли расширять имеющуюся инфраструктуру SONET/SDH или стоит сразу перейти на более экономичную инфраструктуру на базе Ethernet? В современных условиях, когда операторам сетей необходимо снизить затраты и обеспечить скорейший возврат инвестиций, сделать выбор как никогда сложно.

Совместимые с существующим оборудованием, эти гибкие, многофункциональные решения с различными скоростями передачи данных и отличным соотношением «цена/производительность» ускоряют внедрение решений на базе 10 Gigabit Ethernet в городских сетях.

Кроме начавшегося процесса перехода от технологии Fast Ethernet к Gigabit Ethernet, 2003 год ознаменовался массовым внедрением беспроводных технологий. За последние несколько лет преимущества беспроводных сетей стали очевидными для большого круга людей, а сами устройства беспроводного доступа теперь представлены в большем количестве и по более низкой цене. По этим причинам беспроводные сети стали идеальным решением для мобильных пользователей, а также выступили в качестве инфраструктуры мгновенного доступа для широкого круга корпоративных клиентов.

Высокоскоростной стандарт передачи данных IEEE 802.11b был принят почти всеми производителями оборудования для беспроводных сетей со скоростью передачи данных до 11 Мбит/с. Сначала он был предложен как альтернативный вариант для построения корпоративных и домашних сетей. Эволюция беспроводных сетей продолжилась с появлением стандарта IEEE 802.11g, принятого в начале нынешнего года. Этот стандарт обещает значительный рост скорости передачи данных - до 54 Мбит/с. Его задача - обеспечить корпоративным пользователям возможность работы с требовательными к полосе пропускания приложениями, не жертвуя при этом объемом передаваемых данных, но улучшая масштабируемость, помехоустойчивость и безопасность данных.

Безопасность продолжает оставаться очень важным вопросом, поскольку мобильные пользователи, количество которых постоянно растет, требуют возможности безопасного беспроводного доступа к своим данных в любом месте и в любое время. Недавние исследования показали уязвимость шифрования по протоколу Wired Equivalent Privacy (WEP), что делает защиту WEP недостаточной. Создание надежной и масштабируемой системы безопасности возможно с помощью технологий виртуальных частных сетей (VPN), поскольку они обеспечивают инкапсуляцию, аутентификацию и полное шифрование данных в беспроводной сети.

Быстрый рост популярности электронной почты и электронной коммерции cтал причиной резкого увеличения потока данных, передаваемых по общедоступной сети Интернет и по корпоративным IP-сетям. Увеличение трафика данных способствовало переходу от традиционной серверной модели хранения данных (Direct Attached Storage, DAS) к инфраструктуре самой сети, в результате чего появились сети хранения данных (SAN) и сетевые устройства хранения данных (NAS).

В технологиях хранения данных происходят важные изменения, ставшие возможными благодаря появлению сопутствующих сетевых технологий и технологий ввода-вывода. Эти тенденции включают:

Переход к технологиям Ethernet и iSCSI для решений хранения данных на базе IP;

Внедрение архитектуры InfiniBand для кластерных систем;

Разработку новой архитектуры последовательной шины PCI-Express для универсальных устройств ввода-вывода, поддерживающей скорость до 10 Гбит/с и выше.

Новая технология на базе Ethernet под названием iSCSI (Internet SCSI) является высокоскоростным, недорогим и функционирующим на больших дистанциях решением хранения данных для Web-сайтов, провайдеров услуг, коммерческих фирм и других организаций. По этой технологии традиционные команды SCSI и передаваемые данные инкапсулируются в пакеты TCP/IP. Стандарт iSCSI позволяет создавать недорогие сети хранения данных на базе IP, обладающие отличной совместимостью.

Электроника лежит в основе практически всей коммуникации. Все началось с изобретения телеграфа в 1845 году, за ним в 1876 году последовал телефон. Связь постоянно совершенствовалась, а прогресс в электронике, который произошел совсем недавно, заложил новый этап в развитие коммуникаций. Сегодня беспроводная связь вышла на новый уровень и уверенно заняла доминирующую часть рынка связи. И ожидается новый рост сектора беспроводной коммуникации благодаря развивающейся сотовой инфраструктуре, а также современным технологиям, таким как . В данной статье мы рассмотрим наиболее перспективные технологии на ближайшее время.

Состояние 4G

4G в переводе с английского означает долговременную эволюцию (Long Term Evolution (LTE). LTE – это технология OFDM, которая на сегодняшний день является доминирующей структурой сотовой системы связи. Системы 2G и 3G все еще существуют, хотя внедрение 4G началась в 2011 – 2012 годах. Сегодня LTE в основном реализуется крупнейшими операторами в США, Азии и Европе. Его развертывание еще не завершено. LTE получила огромную популярность у владельцев смартфонов, так как высокая скорость передачи данных открыла такие возможности, как потоковая передача видео для эффективного просмотра фильмов. Тем не менее, все не так идеально.

Хотя LTE обещал скорость загрузки до 100 Мбит / с, это не было достигнуто на практике. Скорости до 40 или 50 Мбит / с могут быть достигнуты, но только при особых условиях. При минимальном количестве подключений и минимальном траффике такие скорости очень редко могут достигаться. Наиболее вероятные скорости передачи данных находятся в диапазонах 10 – 15 Мбит / с. В пиковые часы скорость проседает до нескольких Мбит / с. Конечно, это не делает реализацию 4G провальной затеей, это означает, что пока его потенциал реализован не полностью.

Одной из причин, почему 4G не обеспечивает заявленную скорость – слишком большое количество потребителей. При слишком интенсивном его использовании скорость передачи данных существенно снижается.

Однако, существует надежда, что это удастся исправить. Большинство операторов, предоставляющих услуги 4G, еще не реализовали технологию LTE-Advanced, усовершенствование, которое обещает повысить скорость передачи информации. LTE-Advanced использует «объединение несущих» (carrier aggregation (CA)) для увеличения скорости. «Объединение несущих» подразумевает объединение стандартной полосы пропускания LTE до 20 МГц в 40 МГц, 80 МГц или 100 МГц части, для повышения пропускной способности. LTE-Advanced также имеет конфигурацию MIMO 8 x 8. Поддержка этой функции открывает потенциал для увеличения скорости обмена данными до 1 Гбит/с.

LTE-CA известно еще как LTE-Advanced Pro или 4.5G LTE. Эти сочетания технологий определенны группой разработки стандартов 3GPP в версии 13. Она включает в себя агрегацию операторов, а также лицензионный доступ с поддержкой (LAA), метод, который использует LTE в нелицензированном Wi-Fi-спектре 5 ГГц. Он также развертывает агрегацию каналов LTE-Wi-Fi (LWA) и двойное подключение, позволяя смартфону «разговаривать» одновременно с узлом небольшой точки доступа, и точкой доступа Wi-Fi. В данной реализации слишком много деталей, которые мы не будем рассматривать, но общая цель — продлить срок службы LTE за счет снижения задержки и увеличения скорости передачи данных до 1 Гбит / с.

Но это не все. LTE сможет обеспечить более высокую производительность, так как операторы начинают упрощать свою стратегию небольшими ячейками, обеспечивая более высокую скорость передачи данных для большего числа абонентов. Маленькие ячейки — это просто миниатюрные сотовые базовые станции, которые могут быть установлены где угодно для заполнения пробелов охвата макроячейки, добавляя, где это необходимо, производительность.

Еще одним способом повышения производительности является использование Wi-Fi. Этот метод обеспечивает быструю загрузку в ближайшую точку доступа Wi-Fi, когда она доступна. Лишь несколько операторов сделали это доступным, но большинство из них рассматривают усовершенствование LTE под названием LTE-U (U для нелицензионного (unlicensed)). Это метод, аналогичный LAA, который использует нелицензированный диапазон 5 ГГц для быстрой загрузки, когда сеть не может справиться с нагрузкой. Это создает конфликт спектра с последней , которая использует диапазон 5 ГГц. Для реализации этого были разработаны определенные компромиссы.

Как мы видим, потенциал 4G все еще не раскрыт до конца. В ближайшие годы будут внедрены все или большинство из перечисленных усовершенствований. Стоит отметить и то, что производители смартфонов также внесут изменение в аппаратное или программное обеспечения для усовершенствования работы LTE. Данные улучшение, скорее всего, произойдут тогда, когда начнется массовое внедрение стандарта 5G.

Открытие 5G

Как такового 5G пока нет. Так, что громкие заявление об «абсолютно новом стандарте способном изменить подход к беспроводной передаче информации» пока рано. Хотя, некоторые поставщики интернет услуг уже начинают споры, кто же первым внедрит стандарт 5G. Но стоит вспомнить спор недавних лет о 4G. Ведь реального 4G (LTE-A) еще нет. Тем не менее, работа над 5G идет полным ходом.

«Проект партнерства третьего поколения» (3GPP) работает над стандартом 5G, который, как ожидается, будет внедрен в ближайшие годы. Международный союз электросвязи (ITU), который будет «благословлять» и администрировать стандарт, заявляет, что окончательно 5G должен стать доступен к 2020 году. Тем не менее, некоторые ранние версии стандарта 5G все же будут появляться в конкурентной борьбе провайдеров. Некоторые требования 5G появятся уже в 2017 – 2018 годах в той или иной формах. Полное внедрение 5G будет задачей далеко не из легких. Такая система будет одной из самых сложных, если не самой сложной, из беспроводных сетей. Полное ее развертывание ожидается к 2022 году.

Основанием внедрения 5G является преодоление ограничений 4G и добавление возможностей для новых приложений. Ограничения 4G — это в основном пропускная способность абонента и ограниченные скорости передачи данных. Сети сотовой связи уже перешли от голосовых технологий к центрам данных, но необходимы дальнейшие улучшения производительности в будущем.

Более того, ожидается бум новых приложений. К ним относят видео HD 4K, виртуальную реальность, интернет вещей (IoT), а также использование структуры «машина-машина» (М2М). Многие по-прежнему прогнозируют от 20 до 50 миллиардов устройств онлайн, многие из которых будут подключаться к сети интернет через сотовую связь. В то время, как большинство устройств IoT и M2M работают на низких скоростях передачи данных, то для работы с потоковыми данными (видео) необходима высокая скорость интернет. Другими потенциальными приложениями, которые будут использовать стандарт 5G, могут стать умные города и средства связи для обеспечения безопасности автомобильного транспорта.

5G, вероятно, будет более революционным, чем эволюционным. Это будет связано с созданием новой сетевой архитектуры, которая будет накладываться на сеть 4G. Новая сеть будет использовать распределенные мелкие ячейки с волоконным или миллиметровым обратным каналом, а также будет экономной, энергонезависимой и легко масштабируемой. Кроме того, в сетях 5G будет больше программного, чем аппаратного обеспечения. Также будет использоваться программная сеть (SDN), виртуализацию сетевых функций (NFV), методы самоорганизующейся сети (SON).

Также имеется еще несколько ключевых особенностей:

  • Использование миллиметровых волн. В первых версиях 5G могут использоваться полосы в 3,5 ГГц и 5 ГГц. Также рассматриваются варианты частот от 14 ГГц до 79 ГГц. Окончательный вариант пока выбран не был, однако FCC заявляет, что выбор буден сделан в ближайшее время. Тестирование ведется на частотах 24, 28, 37 и 73 ГГц.
  • Рассматриваются новые схемы модуляции. Большинство из них – это некоторые вариант OFDM. Две или более схем могут быть определены в стандарте для различных приложений.
  • Несколько входов с несколькими выходами (MIMO) будут включены в некоторую форму для расширения диапазона, скорости передачи данных и надежности связи.
  • Антенны будут иметь фазированные решетки с адаптивным формированием луча и управлением.
  • Более низкая латентность — главная цель. Менее 5 мс задано, но менее 1 мс является целью.
  • Скорости передачи данных от 1 Гбит / с до 10 Гбит / с ожидаются в полосах пропускания 500 МГц или 1 ГГц.
  • Микросхемы будут изготавливаться из арсенида галлия, кремния-германия и некоторых КМОП.

Одной из самых больших проблем во внедрении 5G ожидается интеграция данного стандарта в мобильные телефоны. В современных смартфонах и так полным-полно различных передатчиков и приемников, а с 5G они станут еще сложнее. Нужна ли такая интеграция?

Путь развития Wi-Fi

Наряду с сотовой связью находится одна из наиболее популярных беспроводных сетей – Wi-Fi. Как и , Wi-Fi является одной из наших любимых «утилит». Мы рассчитываем на подключение к сети Wi-Fi практически в любом месте, и в большинстве случаев мы получаем доступ. Как и большинство популярных беспроводных технологий, он постоянно находится в стадии разработки. Последняя выпущенная версия называется 802.11ac и обеспечивает скорость до 1,3 Гбит / с в нелицензированной полосе частот 5 ГГц. Также идет поиск приложений для стандарта 802.11ad со сверхвысокой частотой 60 ГГц (57-64 ГГц). Это проверенная и экономически эффективная технология, но кому нужны скорости от 3 до 7 Гбит / с на расстоянии до 10 метров?

На данный момент существует несколько проектов развития стандарта 802.11. Вот несколько из основных:

  • 11af — это версия Wi-Fi в белых полосах телевизионного диапазона (54 до 695 МГц). Данные передаются в локальных полосах пропускания 6- (или 8) МГц, которые не заняты. Возможна скорость передачи данных до 26 Мбит/с. Иногда его называют White-Fi, а главная привлекательность 11af заключается в том, что возможный радиус действия на низких частотах составляет много километров и отсутствие прямой видимости (NLOS) (работа только на открытых площадях). Эта версия Wi-Fi еще не используется, но имеет потенциал для приложений IoT.
  • 11ah — обозначенный как HaLow, является еще одним вариантом Wi-Fi, который использует нелицензированный диапазон ISM 902-928 МГц. Это маломощная низкоскоростная (сотни кбит / с) служба с дальностью до километра. Целью является применение в IoT.
  • 11ax — 11ax — это обновление до 11ac. Его можно использовать в диапазонах 2,4 и 5 ГГц, но, скорее всего, он будет работать в полосе частот 5 ГГц исключительно для использования полосы пропускания 80 или 160 МГц. Ожидается, что наряду с 4 x 4 MIMO и OFDA / OFDMA, ожидается пиковая скорость передачи данных до 10 Гбит / с. Окончательной ратификации не будет до 2019 года, хотя предварительные версии, вероятно, будут полными.
  • 11ay — это расширение стандарта 11ad. Он будет использовать полосу частот 60 ГГц, а целью является, по меньшей мере, скорость передачи данных 20 Гбит / с. Еще одна цель — расширить дальность до 100 метров, чтобы иметь больше приложений, таких как обратный трафик для других услуг. Выход этого стандарта не ожидается в 2017 году.

Беспроводные сети для IoT и М2М

Беспроводная связь, безусловно, является будущим интернет вещей (IoT) и межмашинных связей (Machine-to-Machine, M2M). Хотя проводные решения тоже не исключаются, но стремление к беспроводной связи все же является предпочтительней.

Типичным для устройств интернет вещей является небольшое расстояние действия, малая потребляемая мощность, небольшая скорость обмена данными, питания от аккумулятора или батареи с датчиком, как показано на рисунке ниже:

Альтернативой может стать какой-то удаленный исполнительный механизм, как показано на рисунке ниже:

Или же возможна комбинация этих двух устройств. Оба, как правило, подключаются к интернету через беспроводной шлюз, но также могут подключаться и через смартфон. Соединение со шлюзом также беспроводное. Вопрос в другом, какой беспроводной стандарт будет использоваться?

Очевидным выбором становится Wi-Fi, так как трудно представить себе место, где его нет. Но для некоторых приложений он будет излишен, а для некоторых слишком энергоемок. Bluetooth – еще один неплохой вариант, особенно его версия с низким энергопотреблением (BLE). Новые дополнения к сети и шлюзу Bluetooth делают его еще более привлекательным. ZigBee — еще одна готовая и ожидающая альтернатива, и не забываем о Z-Wave. Так же есть несколько вариантов 802.15.4, например 6LoWPAN.

Добавьте к ним новейшие варианты, являющиеся частью энергоэффективных сетей дальнего радиуса действия (Low Power Wide Area Networks (LPWAN)). Эти новые беспроводные варианты предлагают сетевые соединения большей дальности, что обычно невозможно при использовании традиционных технологий, упомянутых выше. Большинство из них работают в нелицензируемом спектре ниже 1 ГГц. Некоторые из новейших конкурентов для приложений IoT:

  • LoRa — изобретение Semtech и поддерживается Link Labs. Эта технология использует линейную частотную модуляцию (ЛЧМ) при низкой скорости передачи данных, чтобы получить диапазон до 2-15 км.
  • Sigfox — французская разработка, использующая ультра узкополосную схему модуляции при низкой скорости передачи данных для отправки коротких сообщений.
  • Weightless – использует телевизионные белые пространства с методами когнитивного радио для более длинных диапазонов и скорости передачи данных до 16 Мбит / с.
  • Nwave — это похоже на Sigfox, но на данный момент нам не удалось собрать достаточно информации.
  • Ingenu — в отличие от других, этот использует диапазон 2,4 ГГц и уникальную схему множественного доступа с произвольной фазой.
  • Halow — это 802.11ah Wi-Fi, описан выше.
  • White-Fi — это 802.11af, описан выше.

Cellular определенно является альтернативой IoT, поскольку является основой межмашинных связей (М2М) уже более 10 лет. Межмашинные связи используют в основном 2G и 3G беспроводные модули для мониторинга удаленных машин. В то время, как 2G (GSM) в конечном счете будет постепенно сокращаться, 3G все еще будет «жить».

Теперь доступен новый стандарт: LTE. В частности, он называется LTE-M и использует сокращенную версию LTE в полосе пропускания 1,4 МГц. Другая версия NB-LTE-M использует полосу пропускания 200 кГц для работы с более низкой скоростью. Все эти варианты смогут использовать существующие сети LTE с обновленным программным обеспечением. Модули и чипы для LTE-M уже доступны, как и на устройствах Sequans Communications.

Одна из самых больших проблем интернет вещей – отсутствие единого стандарта. И в ближайшее время, скорее всего, он не появится. Возможно, в будущем, появится несколько стандартов, только как скоро?

Интернет вещей (от англ. Internet of Things или сокращ. IoT) представляет собой систему окружающих вас устройств, подключенных к друг другу и к сети Интернет. На сегодняшний момент эта отрасль стремительно развивается революционными скачками. Такой технический прогресс в эволюции человечества сравним разве что с изобретением парового двигателя или последующей индустриализацией электричества. К этому дню цифровая трансформация полностью видоизменяет самые различные отрасли в экономической области и трансформирует наше привычное окружение. При этом, как очень часто бывает в таких случаях, будучи в начале пути, окончательный эффект всех превращений трудно спрогнозировать.

Процесс, который уже запущен, скорее всего, не может быть равномерным и на данном этапе некоторые рыночные отрасли, оказываются, в большей степени готовы к изменениям, чем некоторые другие. К первым отраслям следует отнести потребительскую электронику, транспортные средства, логистику, финансовый и банковский сектор; ко вторым можно отнести сельское хозяйство и.т.п. Хотя стоит отметить, что и в этом направлении разработаны успешные пилотные проекты, которые впоследствии обещают принести довольно значимые результаты.

Проект под названием TracoVino, является одной из первых попыток внедрить интернет вещей в знаменитой долине Мозеля, которая к тому же носит звание старейшего винодельческого региона в современной Германии. В основе решения заложена облачная платформа, которая будет автоматизировать все процессы в винограднике, начиная от выращивания продукта до его окончательно бутилирования. Информация, необходимая для принятия решений, будет поступать в электронную систему от нескольких типов датчиков. Кроме определения температуры, влажности почвы и наблюдения за окружающей средой, датчики смогут определять количество полученной солнечной радиации, кислотность земли и содержание в ней различных биогенных веществ. Что это может дать в конце? А то, что компания не только позволит виноделам получать общую картину о состоянии их виноградника, но и анализировать его некоторые области. В конечном счёте, это предоставит возможность людям заблаговременно выявлять проблемы, получать полезную информацию о возможном заражении и даже получить прогноз о возможном качестве и общем количестве вина. Виноделы смогут заключать с бизнес партнёрами форвардные контракты.

Какие ещё области можно подсоединить к такой инновации?

К наиболее развитым сценариям использования IoT, нужно конечно отнести «умные города». Согласно изученным данным, которые были получены от различных компаний, таких как Beecham Research, Pike Research, iSupply Telematics, а также министерства транспорта США, на сегодняшний момент в рамках реализации данных проектов по всему миру насчитывается порядка миллиарда технических устройств, которые отвечают за те или иные функции в системах снабжения водой, управления городским транспортом, общественным здравоохранением и безопасностью. Сюда следует отнести умные парковки, которые оптимизируют использование стояночных мест, интеллектуальные системы водоснабжения, которые мониторят качество потребляемой жителями города воды, умные автотранспортные остановки, которые позволяют получить детальные сведения о времени ожидания нужного транспорта и многое другое.

В промышленной сфере уже работают сотни миллионов устройств, которые готовы к подключению. Среди таких систем можно выделить системы умного технического обслуживания и ремонта, логистического учёта и безопасности, интеллектуальные насосы, компрессоры и клапаны. Огромное количество разнообразных устройств уже давно задействовано в энергетической сфере и системе ЖКХ - это многочисленные счётчики, элементы автоматики распределительных сетей, оборудование для потребительских нужд, электрозарядная инфраструктура, а также техническое обеспечение для возобновляемых и распределяемых источников питания. В медицинской области к интернету вещей на данный момент подключаются и будут у будущем подключены диагностические средства, мобильные лаборатории, имплантаты различных направлений, технические устройства для расширения телемедицины.

Перспективы количества подключенных устройств к интернету в будущем

По различным наблюдениям в ближайшем будущем количество технических подключений будет соразмерно увеличиваться и составит рост в 25% каждый год. А вообще к 2021 году в мире будет насчитываться порядка 28 миллиардов подключённых гаджетов и устройств. Из всей этой суммы всего лишь 13 миллиардов будет приходиться на привычные потребительские девайсы, такие как телефоны, планшеты, ноутбуки и компьютеры. А остальные 15 миллиардов устройств будут представлены пользовательскими и промышленными устройствами. Сюда можно отнести различные датчики, терминалы для продаж, автомашины, табло и т.п.

Несмотря на то, что приведённые выше данные из ближайшего будущего поражают умственное воображение, всё же и они не являются окончательной цифрой. Интернет вещей будет внедряться с каждым разом всё активнее и активнее, и чем дальше, тем больше устройств (простых или сложных) придётся подключить. По мере того, как развиваются человеческие технологии, а особенно под влиянием запуска инновационных сетей 5G после 2020 года, общий прирост подключённой техники будет шагать стремительными темпами и очень быстро достигнет цифры в 50 млрд.


Массовый характер подключений к сети, а также многочисленные сценарии использования, диктуют новые требования к технологии IoT по самому широкому диапазону. Скорость передачи информации, всякого рода задержки, а также надёжность (гарантированность) передачи данных определяются особенностями конкретного применения. Но, несмотря на это есть ряд общих целевых показателей, которые заставляют нас отдельно смотреть на сетевые технологии для IoT и их отличия от привычных всем сетей телефонной связи.

Наипервейшей задачей является стоимость реализации сетевой технологии. Ведь в конечном устройстве она должна быть существенно меньше существующих на сегодняшний момент модулей GSM/WCDMA/LTE, которые используются при производстве телефонов и модемов. Одна из причин, которая сдерживает массовое внедрение подключённых устройств - это слишком высокая финансовая составляющая самого чипсета, реализующего полный стек сетевых технологий, куда включена передача голоса и многие иные функции, которые не являются столь необходимыми в большинстве доступных сценариев.

Главные требования к новым системам

Связанное с этим вопросом, но формулируемое отдельным требование - это низкие затраты на энергоресурсы и как можно более длительное время автономной работы. Большое количество сценариев в области применения интернета вещей предусматривают автономную работу подключённых устройств от встроенных в них элементов питания. Упрощение сетевых модулей и энергоэффективная модель позволят достичь автономной работы, которая будет рассчитана до 10 лет, при обшей ёмкости элемента питания в 5 Вт*ч. Таких цифр, в частности, можно будет достичь благодаря уменьшению объёма передаваемой информации при использовании длительных периодов «молчания», в течение которых, гаджет не будет получать и не передавать сведения. Таким образом он практически будет потреблять малое количество электроэнергии. Правда стоит отметить, что реализация конкретных механизмов, конечно, отличается в зависимости от того, к какой технологии его будут применять.

Покрытие сети - это ещё одна характеристика, которую следует досконально изучить и рассмотреть. На сегодняшний момент покрытие мобильной сети в достаточном объёме передаёт устойчивую передачу данных в населённые пункты, в том числе и внутрь зданий. Но в то же время, подключённые устройства могут быть и там, где массового скопления людей большую часть времени попросту нет. Сюда можно отнести отдалённые труднодоступные районы, огромные железнодорожные перегоны, поверхность обширных морей и океанов, земляные подвалы, изолированные бетонные и металлические короба, шахты лифта, железные контейнеры и т.д. Целевым ориентиром разрешения этой проблемы, по мнению большинства людей задействованных на IoT рынке, является улучшение бюджета линии на 20 dB по отношению к традиционным сетям GSM, которые пока являются лидерами по покрытию среди мобильных технологий на сегодня.


Для интернета вещей выдвигаются повышенные требования к стандартам связи

Различные сценарии применения интернета вещей в различных сферах деятельности предполагают совершенно разноплановые требования к связи. И здесь вопрос стоит не только в возможностях быстрого масштабирования сети в плане числа требующих подключения устройств. Например, видно, что в вышеупомянутом примере «умного виноградника» применяется большое количество достаточно несложных датчиков, а ведь на промышленных предприятиях уже будут подключены довольно сложные агрегаты, которые выполняют самостоятельные действия, а не просто фиксируют определённые сведения, возникающие в окружающей среде. Также можно упомянуть и медицинскую область применения, в частности техническое оборудование для телемедицины. Применение данных комплексов, работой которых является проведение дистанционной диагностики, мониторинг за сложными врачебными манипуляциями и удалённым обучением с использованием видеоконтента как связи в режиме реального времени, несомненно, в будущем будет предъявлять всё более и более новые требования в плане обрывов сигнала, передачи сведений, а также надёжности и безопасности связи.

Технологии интернета вещей обязаны быть предельно гибкими, дабы обеспечивать многообразный набор сетевых характеристик в зависимости от сферы применения, приоритезации десятков и сотен различных видов сетевого трафика и правильное распределение ресурсов сети для обеспечения экономической эффективности. Огромное количество подключённой техники, десятки различных сценариев применения, гибкое управление и контроль - вот, всё то, что обязано быть реализовано в рамках общей сети.


Текущему решению поставленных задач уже посвящены долгие наработки и разработанные сценарии последних лет в сфере беспроводной передачи информации. Это связанно как со стремлением внедрить уже имеющиеся сетевые архитектуры и протоколы, так и для создания инновационных системных решений буквально с самого начала. С одной стороны очень чётко прослеживаются так называемые «капиллярные решения», которые сравнительно неплохо решают задачи IoT коммуникаций в рамках одного здания или территории с ограниченным потенциалом. К этим решениям можно отнести такие популярные сегодня сети как Wi-Fi, Bluetooth, Z-Wave, Zigbee и их иные цифровые аналоги.

С другой стороны - нынешние мобильные технологии, которые со всей очевидностью располагаются вне конкуренции с точки зрения обеспечения сетевого покрытия и масштабируемости хорошо управляемой инфраструктуры. Как говорится в исследовательском докладе Ericsson Mobility Report, общее покрытие GSM сети составляет на сегодня порядка 90% заселённой территории планеты, сети WCDMA и LTE покрывают 65% и 40% непосредственно при активном строительстве новых сетей. Шаги, предпринятые в рамках развития стандартов мобильной связи, в частности спецификации 3GPP Release 13 направлены как раз на достижение целевых для IoT показателей при сохранении преимуществ использования глобальной экосистемы. Усовершенствование данных технологий в будущем, станет прочным фундаментом грядущих модификаций стандартов мобильной связи, куда помимо прочего и входят стандарты сетей пятого поколения (5G).

Альтернативные разработки низкой мощности для нелицензируемого частотного спектра, в большинстве своём, направлены на более специализированное применение. К тому же необходимость разработки новой инфраструктуры и закрытость технологий прямо влияют на распространение подобных мировых сетей.